Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612383

RESUMO

Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.


Assuntos
Acrilatos , Lesão Pulmonar , Polímeros , Ratos , Animais , Ratos Endogâmicos F344 , Estresse do Retículo Endoplasmático , Inflamação , Pulmão
2.
Biomolecules ; 13(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238588

RESUMO

Psychological stress plays a major role in depression, and interleukin-6 (IL-6) is elevated during depression and psychological stress. MicroRNAs (miRNAs) in extracellular vesicles (EVs), including exosomes and microvesicles, suppress mRNA expression in other cells when endocytosed. In this study, we analyzed the effect of IL-6 on EVs secreted by neural precursor cells. Cells from the human immortalized neural precursor cell line LUHMES were treated with IL-6. EVs were collected using a nanofiltration method. We then analyzed the uptake of LUHMES-derived EVs by astrocytes (ACs) and microglia (MG). Microarray analysis of miRNAs was performed using EV-incorporated RNA and intracellular RNA from ACs and MG to search for increased numbers of miRNAs. We applied the miRNAs to ACs and MG, and examined the cells for suppressed mRNAs. IL-6 increased several miRNAs in the EVs. Three of these miRNAs were originally low in ACs and MG (hsa-miR-135a-3p, hsa-miR-6790-3p, and hsa-miR-11399). In ACs and MG, hsa-miR-6790-3p and hsa-miR-11399 suppressed four mRNAs involved in nerve regeneration (NREP, KCTD12, LLPH, and CTNND1). IL-6 altered the types of miRNAs in EVs derived from neural precursor cells, by which mRNAs involved in nerve regeneration were decreased in ACs and MG. These findings provide new insights into the involvement of IL-6 in stress and depression.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células-Tronco Neurais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Células-Tronco Neurais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
3.
J Occup Health ; 64(1): e12369, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459418

RESUMO

OBJECTIVES: Organic polymers are materials widely used in our daily lives, such as daily necessities, foods, and medicines. There have been reports recently that cross-linked polyacrylic acid (CL-PAA) can possibly cause serious lung disease. We investigated whether intratracheal instillation of CL-PAA causes pulmonary disorder in rats. METHODS: Male F344 rats were administered low (0.2 mg/rat) and high (1.0 mg/rat) doses of CL-PAA intratracheally and were dissected 3 days, 1 week, 1 month, 3 months, and 6 months after exposure to examine inflammatory and fibrotic responses in the lungs. Only the high-dose specimens were subjected to ultrasonic dispersion treatment of the administered material. RESULTS: There was a dose-dependent increase in the total cell count, neutrophil count, neutrophil percentage, lactate dehydrogenase (LDH), surfactant protein D (SP-D), cytokine-induced neutrophil chemoattractant (CINC)-1 and CINC-2 values in bronchoalveolar lavage fluid (BALF) from 3 days to at least 3 months after intratracheal administration of CL-PAA. Heme oxygenase-1 (HO-1) in lung tissue was also persistently elevated from 3 days to 6 months after exposure. Alkaline phosphatase (ALP) in BALF was elevated at 3 days and 1 month after exposure only in the high-dose group. Histopathological findings in lung tissue showed inflammatory and fibrotic changes from 3 days after administration, and we observed obvious inflammatory changes for up to 3 months and fibrotic changes for up to 6 months. CONCLUSION: Intratracheal administration of CL-PAA induced persistent neutrophilic inflammation and fibrosis in the rats' lungs, suggesting that CL-PAA may have inflammogenic and fibrogenic effects.


Assuntos
Resinas Acrílicas , Pneumopatias , Masculino , Animais , Ratos , Ratos Endogâmicos F344 , Resinas Acrílicas/toxicidade , Líquido da Lavagem Broncoalveolar
4.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430349

RESUMO

We conducted intratracheal instillations of polyacrylic acid (PAA) with crosslinking and non-crosslinking into rats in order to examine what kinds of physicochemical characteristics of acrylic-acid-based polymers affect responses in the lung. F344 rats were intratracheally exposed to similar molecular weights of crosslinked PAA (CL-PAA) (degree of crosslinking: ~0.1%) and non-crosslinked PAA (Non-CL-PAA) at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months post-exposure. Both PAAs caused increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 6 months following instillation. The release of lactate dehydrogenase (LDH) activity in the BALF was higher in the CL-PAA-exposed groups. Histopathological findings of the lungs demonstrated that the extensive fibrotic changes caused by CL-PAA were also greater than those in exposure to the Non-CL- PAA during the observation period. CL-PAA has more fibrogenicity of the lung, suggesting that crosslinking may be one of the physicochemical characteristic factors of PAA-induced lung disorder.


Assuntos
Pulmão , Ratos , Animais , Ratos Endogâmicos F344 , Ratos Wistar , Pulmão/patologia , Líquido da Lavagem Broncoalveolar/química
5.
J Occup Health ; 64(1): e12367, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36366872

RESUMO

OBJECTIVES: We conducted inhalation and intratracheal instillation studies in order to examine the effects of tungsten trioxide (WO3 ) nanoparticles on the lung, and evaluated whether or not the nanoparticles would cause persistent lung inflammation. METHODS: In the inhalation study, male 10-week-old Fischer 334 rats were classified into 3 groups. The control, low-dose, and high-dose groups inhaled clean air, 2, and 10 mg/m3 WO3 nanoparticles, respectively, for 6 h each day for 4 weeks. The rats were dissected at 3 days, 1 month, and 3 months after the inhalation, and the bronchoalveolar lavage fluid (BALF) and lung tissue were examined. In the intratracheal instillation study, male 12-week-old Fischer 334 rats were divided into 3 subgroups. The control, low-dose, and high-dose groups were intratracheally instilled 0.4 ml distilled water, 0.2, and 1.0 mg WO3 nanoparticles, respectively, dissolved in 0.4 ml distilled water. The rats were sacrificed at 3 days, 1 week, and 1 month after the intratracheal instillation, and the BALF and lung tissue were analyzed as in the inhalation study. RESULTS: The inhalation and instillation of WO3 nanoparticles caused transient increases in the number and rate of neutrophils, cytokine-induced neutrophil chemoattractant (CINC)-1, and CINC-2 in BALF, but no histopathological changes or upregulation of heme oxygenase (HO)-1 in the lung tissue. CONCLUSION: Our results suggest that WO3 nanoparticles have low toxicity to the lung. According to the results of the inhalation study, we also propose that the no observed adverse effect level (NOAEL) of WO3 nanoparticles is 2 mg/m3 .


Assuntos
Pulmão , Nanopartículas , Masculino , Ratos , Animais , Líquido da Lavagem Broncoalveolar , Nanopartículas/toxicidade , Ratos Endogâmicos F344 , Água
6.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142256

RESUMO

BACKGROUND: We conducted intratracheal instillations of different molecular weights of polyacrylic acid (PAA) into rats in order to examine what kinds of physicochemical characteristics of acrylic acid-based polymer affect responses in the lung. METHODS: F344 rats were intratracheally exposed to a high molecular weight (HMW) of 598 thousand g/mol or a low molecular weight (LMW) of 30.9 thousand g/mol PAA at low and high doses. Rats were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months post exposure. RESULTS: HMW PAA caused persistent increases in neutrophil influx, cytokine-induced neutrophil chemoattractants (CINC) in the bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in the lung tissue from 3 days to 3 months and 6 months following instillation. On the other hand, LMW PAA caused only transient increases in neutrophil influx, CINC in BALF, and HO-1 in the lung tissue from 3 days to up to 1 week or 1 month following instillation. Histopathological findings of the lungs demonstrated that the extensive inflammation and fibrotic changes caused by the HMW PAA was greater than that in exposure to the LMW PAA during the observation period. CONCLUSION: HMW PAA induced persistence of lung disorder, suggesting that molecular weight is a physicochemical characteristic of PAA-induced lung disorder.


Assuntos
Heme Oxigenase-1 , Pulmão , Resinas Acrílicas/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/química , Fatores Quimiotáticos/farmacologia , Citocinas/farmacologia , Intubação Intratraqueal , Pulmão/patologia , Peso Molecular , Ratos , Ratos Endogâmicos F344
7.
Part Fibre Toxicol ; 19(1): 8, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062982

RESUMO

BACKGROUND: Some organic chemicals are known to cause allergic disorders such as bronchial asthma and hypersensitivity pneumonitis, and it has been considered that they do not cause irreversible pulmonary fibrosis. It has recently been reported, however, that cross-linked acrylic acid-based polymer, an organic chemical, might cause serious interstitial lung diseases, including pulmonary fibrosis. We investigated whether or not intratracheal instillation exposure to cross-linked polyacrylic acid (CL-PAA) can cause lung disorder in rats. METHODS: Male F344 rats were intratracheally instilled with dispersed CL-PAA at low (0.2 mg/rat) and high (1.0 mg/rat) doses, and were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure to examine inflammatory and fibrotic responses and related gene expressions in the lungs. Rat lungs exposed to crystalline silica, asbestos (chrysotile), and NiO and CeO2 nanoparticles were used as comparators. RESULTS: Persistent increases in total cell count, neutrophil count and neutrophil percentage, and in the concentration of the cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and C-X-C motif chemokine 5 (CXCL5), which correlated with lung tissue gene expression, were observed in bronchoalveolar lavage fluid (BALF) from 3 days until at least 1 month following CL-PAA intratracheal instillation. Persistent increases in heme oxygenase-1 (HO-1) in the lung tissue were also observed from 3 days to 6 months after exposure. Histopathological findings of the lungs demonstrated that extensive inflammation at 3 days was greater than that in exposure to silica, NiO nanoparticles and CeO2 nanoparticles, and equal to or greater than that in asbestos (chrysotile) exposure, and the inflammation continued until 1 month. Fibrotic changes also progressed after 1 month postexposure. CONCLUSION: Our results suggested that CL-PAA potentially causes strong neutrophil inflammation in the rat and human lung.


Assuntos
Resinas Acrílicas , Pulmão , Animais , Líquido da Lavagem Broncoalveolar , Masculino , Ratos , Ratos Endogâmicos F344
8.
Toxics ; 10(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051082

RESUMO

Photocatalytic filters installed in air purifiers have been used to purify spaces by decomposing allergenic substances. However, we have not found any reports that evaluate the effectiveness of photocatalytic filters in suppressing allergic reactions in living organisms. In this study, we intratracheally instilled ovalbumin (OVA) into OVA-sensitized mice after the OVA was photocatalyzed by a titanium dioxide (TiO2) filter, and verified the experimental model for evaluating the allergy-suppressing effect of photocatalysts. Mice were sensitized to OVA (10 µg/mouse) four times, and were intratracheally instilled with OVA (10 µg/mouse) after photocatalysis three times. Non-sensitized animals were instilled with normal saline following the same exposure schedule. The mice were dissected 24 h after final exposure. The OVA after photocatalysis significantly decreased the number of eosinophils in bronchoalveolar lavage fluid, and the concentration of OVA-specific IgE and IgG1 in serum, which were elevated in untreated OVA. Moreover, our experimental model showed the suppression of allergic reactions in mice, along with the decomposition of OVA after photocatalysis using the photocatalytic filter. Taken together, our experimental model for evaluating allergic reactions in the respiratory tract suggested that the allergy-suppressing effect of the photocatalytic filter can be evaluated.

9.
J Occup Health ; 63(1): e12240, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34128301

RESUMO

Respirable organic chemicals were originally thought to cause allergic respiratory diseases, such as bronchial asthma and hypersensitivity pneumonitis, and believed not to cause lung disorders derived from inflammatory or fibrotic processes such as pulmonary fibrosis and interstitial pneumonitis. It has recently been reported, however, that exposure to organic chemicals can cause interstitial lung diseases. In this review, we discuss the clinical features of occupational asthma and hypersensitivity pneumonitis, as well as other lung disorders, including interstitial pneumonitis, caused by humidifier disinfectants in Korea and by a cross-linked acrylic acid-based polymer (CL-PAA) in Japan.


Assuntos
Exposição por Inalação/efeitos adversos , Pneumopatias/induzido quimicamente , Doenças Profissionais/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Compostos Orgânicos/toxicidade , Resinas Acrílicas/toxicidade , Adulto , Alveolite Alérgica Extrínseca/induzido quimicamente , Asma Ocupacional/induzido quimicamente , Desinfetantes/toxicidade , Feminino , Humanos , Umidificadores , Japão , Doenças Pulmonares Intersticiais/induzido quimicamente , Masculino , Pessoa de Meia-Idade , República da Coreia
10.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924924

RESUMO

This work studies the relationship between lung inflammation caused by nanomaterials and surfactant protein D (SP-D) kinetics and investigates whether SP-D can be a biomarker of the pulmonary toxicity of nanomaterials. Nanomaterials of nickel oxide and cerium dioxide were classified as having high toxicity, nanomaterials of two types of titanium dioxides and zinc oxide were classified as having low toxicity, and rat biological samples obtained from 3 days to 6 months after intratracheal instillation of those nanomaterials and micron-particles of crystalline silica were used. There were different tendencies of increase between the high- and low-toxicity materials in the concentration of SP-D in bronchoalveolar-lavage fluid (BALF) and serum and in the expression of the SP-D gene in the lung tissue. An analysis of the receiver operating characteristics for the toxicity of the nanomaterials by SP-D in BALF and serum showed a high accuracy of discrimination from 1 week to 3 or 6 months after exposure. These data suggest that the differences in the expression of SP-D in BALF and serum depended on the level of lung inflammation caused by the nanomaterials and that SP-D can be biomarkers for evaluating the pulmonary toxicity of nanomaterials.


Assuntos
Pulmão/efeitos dos fármacos , Nanoestruturas/toxicidade , Proteína D Associada a Surfactante Pulmonar/sangue , Testes de Toxicidade/normas , Animais , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/química , Pulmão/metabolismo , Masculino , Nanoestruturas/administração & dosagem , Ratos Endogâmicos F344 , Testes de Toxicidade/métodos
11.
Nanomaterials (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076408

RESUMO

We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW). C-X-C motif chemokine 5 (CXCL5), C-C motif chemokine 2 (CCL2), C-C motif chemokine 7 (CCL7), C-X-C motif chemokine 10 (CXCL10), and C-X-C motif chemokine 11 (CXCL11) were selected using cDNA microarray analysis at one month after instillation of NiO in the high dose group. The mRNA expression of these five genes were evaluated while using real-time quantitative polymerase chain reaction (RT-qPCR) from three days to six months after intratracheal instillation. The receiver operating characteristic (ROC) results showed a considerable relationship between the pulmonary toxicity ranking of nanomaterials and the expression of CXCL5, CCL2, and CCL7 at one week and one month. The expression levels of these three genes also moderately or strongly correlated with inflammation in the lung tissues. Three chemokine genes can be useful as predictive biomarkers for the ranking of the pulmonary toxicity of nanomaterials.

12.
Nanomaterials (Basel) ; 10(8)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784876

RESUMO

This work determines whether cytokine-induced neutrophil chemoattractants (CINC)-1, CINC-2 and CINC-3 can be markers for predicting high or low pulmonary toxicity of nanomaterials (NMs). We classified NMs of nickel oxide (NiO) and cerium dioxide (CeO2) into high toxicity and NMs of two types of titanium dioxides (TiO2 (P90 and rutile)) and zinc oxide (ZnO) into low toxicity, and we analyzed previous data of CINCs in bronchoalveolar lavage fluid (BALF) of rats from three days to six months after intratracheal instillation (0.2 and 1.0 mg) and inhalation exposure (0.32-10.4 mg/m3) of materials (NiO, CeO2, TiO2 (P90 and rutile), ZnO NMs and micron-particles of crystalline silica (SiO2)). The concentration of CINC-1 and CINC-2 in BALF had different increase tendency between high and low pulmonary toxicity of NMs and correlated with the other inflammatory markers in BALF. However, CINC-3 increased only slightly in a dose-dependent manner compared with CINC-1 and CINC-2. Analysis of receiver operating characteristics for the toxicity of NMs by CINC-1 and CINC-2 showed the most accuracy of discrimination of the toxicity at one week or one month after exposure and CINC-1 and CINC-2 in BALF following intratracheal instillation of SiO2 as a high toxicity could accurately predict the toxicity at more than one month after exposure. These data suggest that CINC-1 and CINC-2 may be useful biomarkers for the prediction of pulmonary toxicity of NMs relatively early in both intratracheal instillation and inhalation exposure.

13.
J Occup Health ; 62(1): e12146, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32710690

RESUMO

OBJECTIVES: Along with technological innovations for improving the efficiency of printing, nanoparticles have been added to the surface of toners, and there is concern about the harmful effects of those components. We investigated, through a long-term observation following intratracheal instillation using rats, whether exposure to a toner with external additives can cause tumorigenesis. METHODS: Female Wistar rats were intratracheally instilled with dispersed toner at low (1 mg/rat) and high (2 mg/rat) doses, and the rats were sacrificed at 24 months after exposure, after which we examined pulmonary inflammation, histopathological changes, and DNA damage in the lung. Rats that had deceased before 24 months were dissected at that time as well, to compare tumor development. RESULTS: Although alveolar macrophages with pigment deposition in the alveoli were observed in the 1 and 2 mg exposure groups, no significant lung inflammation/fibrosis or tumor was observed. Since immunostaining with 8-OHdG or γ-H2AX did not show a remarkable positive reaction, it is thought that toner did not cause severe DNA damage to lung tissue. CONCLUSION: These results suggest that toner with external additives may have low toxicity in the lung.


Assuntos
Carcinogênese/induzido quimicamente , Exposição por Inalação/efeitos adversos , Tinta , Pulmão/patologia , Pneumonia/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Feminino , Ratos , Ratos Wistar , Traqueia
14.
Part Fibre Toxicol ; 15(1): 41, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352603

RESUMO

BACKGROUND: In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2-1.0 mg) and inhalation exposures (exposure concentration: 0.32-10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure. RESULTS: Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure. CONCLUSION: These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Peroxidase/análise , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocinas/análise , Pulmão/enzimologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Nanopartículas/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ratos Endogâmicos F344
15.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257061

RESUMO

The hazards of various types of nanoparticles with high functionality have not been fully assessed. We investigated the usefulness of biopersistence as a hazard indicator of nanoparticles by performing inhalation and intratracheal instillation studies and comparing the biopersistence of two nanoparticles with different toxicities: NiO and TiO2 nanoparticles with high and low toxicity among nanoparticles, respectively. In the 4-week inhalation studies, the average exposure concentrations were 0.32 and 1.65 mg/m³ for NiO, and 0.50 and 1.84 mg/m³ for TiO2. In the instillation studies, 0.2 and 1.0 mg of NiO nanoparticles and 0.2, 0.36, and 1.0 mg of TiO2 were dispersed in 0.4 mL water and instilled to rats. After the exposure, the lung burden in each of five rats was determined by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) from 3 days to 3 months for inhalation studies and to 6 months for instillation studies. In both the inhalation and instillation studies, NiO nanoparticles persisted for longer in the lung compared with TiO2 nanoparticles, and the calculated biological half times (BHTs) of the NiO nanoparticles was longer than that of the TiO2 nanoparticles. Biopersistence also correlated with histopathological changes, inflammatory response, and other biomarkers in bronchoalveolar lavage fluid (BALF) after the exposure to nanoparticles. These results suggested that the biopersistence is a good indicator of the hazards of nanoparticles.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Traqueia/efeitos dos fármacos , Animais , Inalação , Instilação de Medicamentos , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Níquel/química , Ratos , Ratos Endogâmicos F344 , Titânio/química
16.
Biomed Res Int ; 2017: 4245309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28191462

RESUMO

We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 µm) at three mass concentrations of 1, 4, and 16 mg/m3 for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung.


Assuntos
Pulmão/patologia , Impressão , 8-Hidroxi-2'-Desoxiguanosina , Administração por Inalação , Animais , Peso Corporal , Líquido da Lavagem Broncoalveolar/citologia , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Heme Oxigenase (Desciclizante)/metabolismo , Contagem de Leucócitos , Tamanho do Órgão , Peroxidase/metabolismo , Ratos Wistar , Coloração e Rotulagem
17.
Int J Mol Sci ; 17(8)2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490535

RESUMO

We conducted inhalation and intratracheal instillation studies of zinc oxide (ZnO) nanoparticles in order to examine their pulmonary toxicity. F344 rats were received intratracheal instillation at 0.2 or 1 mg of ZnO nanoparticles with a primary diameter of 35 nm that were well-dispersed in distilled water. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed at three days, one week, one month, three months, and six months after the instillation. As the inhalation study, rats were exposed to a concentration of inhaled ZnO nanoparticles (2 and 10 mg/m³) for four weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were analyzed at three days, one month, and three months after the end of the exposure. In the intratracheal instillation study, both the 0.2 and the 1.0 mg ZnO groups had a transient increase in the total cell and neutrophil count in the BALF and in the expression of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in the BALF. In the inhalation study, transient increases in total cell and neutrophil count, CINC-1,-2 and HO-1 in the BALF were observed in the high concentration groups. Neither of the studies of ZnO nanoparticles showed persistent inflammation in the rat lung, suggesting that well-dispersed ZnO nanoparticles have low toxicity.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Neutrófilos/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Instilação de Medicamentos , Intubação Intratraqueal , Masculino , Nanopartículas Metálicas/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Óxido de Zinco/administração & dosagem
18.
Antioxidants (Basel) ; 5(1)2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797643

RESUMO

NiO nanoparticles were administered to rat lungs via intratracheal instillation or inhalation. During pulmonary toxicity caused by NiO nanoparticles, the induction of oxidative stress is a major factor. Both intratracheal instillation and inhalation of NiO nanoparticles induced pulmonary oxidative stress. The oxidative stress response protein, heme oxygenase-1 (HO-1), was induced by the administration of NiO nanoparticles at both the protein and gene expression level. Additionally, certain oxidative-stress markers in the lung, such as 8-iso-prostaglandin F2α, thioredoxin, and inducible nitric oxide synthase were increased. Furthermore, the concentration of myeloperoxidase (MPO) in the lung was also increased by the administration of NiO nanoparticles. When the amount of NiO in the lung is similar, the responses against pulmonary oxidative stress of intratracheal instillation and inhalation are also similar. However, the state of pulmonary oxidative stress in the early phase was different between intratracheal instillation and inhalation, even if the amount of NiO in the lung was similar. Inhalation causes milder oxidative stress than that caused by intratracheal instillation. On evaluation of the nanoparticle-induced pulmonary oxidative stress in the early phase, we should understand the different states of oxidative stress induced by intratracheal instillation and inhalation.

19.
Nanotoxicology ; 10(5): 607-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26558952

RESUMO

In order to examine whether intratracheal instillation studies can be useful for determining the harmful effect of nanoparticles, we performed inhalation and intratracheal instillation studies using samples of the same nanoparticles. Nickel oxide nanoparticles (NiO) and titanium dioxide nanoparticles (TiO2) were used as chemicals with high and low toxicities, respectively. In the intratracheal instillation study, rats were exposed to 0.2 or 1 mg of NiO or TiO2. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the single intratracheal instillation. In the inhalation study, rats were exposed to inhaled NiO or TiO2 (1.65, 1.84 mg/m(3), respectively) for 4 weeks. The same endpoints were examined from 3 days to 3 months after the end of exposure. Inhalation of NiO induced an increase in the number of neutrophils in BALF and concentrations of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and heme oxygenase (HO)-1. Intratracheal instillation of NiO induced persistent inflammation and upregulation of these cytokines was observed in the rats. However, inhalation of TiO2 did not induce pulmonary inflammation, and intratracheal instillation of TiO2 transiently induced an increase in the number of neutrophils in BALF and the concentrations of CINC-1, CINC-2 and HO-1. Taken together, a difference in pulmonary inflammation was observed between the high and low toxicity nanomaterials in the intratracheal instillation studies, as in the inhalation studies, suggesting that intratracheal instillation studies may be useful for ranking the harmful effects of nanoparticles.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas , Níquel , Pneumonia/induzido quimicamente , Titânio , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/imunologia , Instilação de Medicamentos , Pulmão/imunologia , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Neutrófilos/efeitos dos fármacos , Níquel/administração & dosagem , Níquel/toxicidade , Ratos , Ratos Wistar , Titânio/administração & dosagem , Titânio/toxicidade
20.
Environ Health Prev Med ; 21(1): 42-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26438563

RESUMO

OBJECTIVES: We performed the two inhalation exposures, whole-body inhalation and nose-only inhalation, to investigate the pulmonary deposition and health effects of the two inhalation methods. METHODS: In both methods, we exposed rats to the same TiO2 nanoparticles at almost the same exposure concentration for 6 h and compared the deposited amounts of nanoparticles and histopathological changes in the lungs. Rats were exposed to rutile-type TiO2 nanoparticles generated by the spray-dry method for 6 h. The exposure concentration in the whole-body chamber was 4.10 ± 1.07 mg/m(3), and that in nose-only chamber was 4.01 ± 1.11 mg/m(3). The particle sizes were 230 and 180 nm, respectively. A control group was exposed to fresh air. RESULTS: The amounts of TiO2 deposited in the lungs as measured by ICP-AES after acid digestion just after the exposure were: 42.6 ± 3.5 µg in the whole-body exposure and 46.0 ± 7.7 µg in the nose-only exposure groups. The histopathological evaluation was the same in both exposure groups: no infiltration of inflammatory cells in the alveolar space and interstitium, and no fibrosis. CONCLUSION: The two inhalation methods using the same material under the same exposure conditions resulted in the same particle deposition and histopathology in the lung.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas , Titânio/toxicidade , Testes de Toxicidade/métodos , Animais , Pulmão/patologia , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos F344 , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...